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Four correlated linear response theory methods — the second order polarization propagator
approximation (SOPPA), the second order polarization propagator approximation with cou-
pled cluster singles and doubles amplitudes, SOPPA(CCSD), the CC2 and coupled cluster sin-
gles doubles (CCSD) linear response theory — were used to determine the dipole oscillator
strength sum rules of the hydrogen halides HX (with X = F, CI, Br and ) and the Cg4 disper-
sion coefficient for all pairs of interacting HX molecules via numerical integration of the
Casimir-Polder formula. The dependence of the polarizabilities, their frequency dependence
and the Cq coefficients on the level of correlation and the dependence of the Cg coefficients
on the two intramolecular bond lengths were studied.
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rules; Coupled clusters linear response method; Mgller-Plesset perturbation theory linear re-
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The dispersion-energy coefficients which govern the interaction energy of
nonpolar species at long separation (see e.g.'™*) are of great interest for
atomic and molecular physics in particular at low temperature. Accurately
calculated values of dispersion coefficients are needed for, e.g., the interpre-
tation of experiments concerning total and differential cross-sections from
low-angle scattering®. The anisotropic part of the dispersion interaction en-
ergy plays an important role in, e.g., molecular dynamics simulations of
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1416 Paidarovd, Sauer:

molecules, where the mutual orientation has to be taken into account®, or
in molecular modelling of crystal structures’.

The long-range asymptotic part of the weak interaction of van der Waals
complexes is determined by the electric polarizability. While the asymp-
totic induction energy can be calculated from static multipole polariz-
abilities and multipole moments, the dispersion energy is described in
terms of dispersion coefficients which are related to the dynamic multipole
polarizabilities at imaginary frequencies via integration in the Casimir—
Polder formula?.

Frequency dependent multipole polarizabilities can in general be ob-
tained from polarization propagators®-10 or linear response functions'’2,
In principle the polarizability for imaginary frequencies could be obtained
with this formalism by using complex arithmetic!314. However, this is of-
ten avoided by using a moment expansion of the polarizability'>-® or an
expansion in the dipole oscillator strength sum rules, S(k) or Cauchy mo-
ments!®. The S(k) sum rules are also related to many other properties, e.g.
the Verdet constant?® or mean excitation energies?-23, and have therefore
been calculated using various ab initio methods such as e.g. time-dependent
coupled Hartree-Fock?123-25 multiconfigurational self-consistent field lin-
ear responsel’, SOPPA 2627 SOPPA(CCSD) %7, time-dependent second-order
Mgller-Plesset perturbation theory?® and various coupled cluster linear re-
sponse functions?9-32,

We have recently published®® the first application of the SOPPA(CCSD)
method to the calculation of the C4 dispersion coefficients with particular
emphasis on basis set and zero-point vibrational averaging effects as well as
the possible usage of relativistic effective large-core potentials. In the pres-
ent study we concentrate now on the comparison of Mgller-Plesset per-
turbation theory and coupled cluster linear response functions in the cal-
culation of dipole oscillator strength sum rules and dispersion coefficients.

In most currently available intermolecular potential energy surfaces (PES)
the interacting molecules are treated as rigid bodies in either their equilib-
rium or vibrationally averaged geometries. However, several authors®* have
recently underlined the increasing need for potential energy surfaces with
intramolecular-coordinate dependence, which are necessary for theoretical
studies of a number of important phenomena as e.g. intramolecular fre-
quency shifts, vibrational predissociation, intramolecular vibrational distri-
bution, etc. We will therefore present also C4 coefficients surfaces for the
mixed pairs of hydrogen halides as a function of the two intramolecular
bond lenghts.
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In the following sections we will firstly review the definitions of disper-
sion coefficients and sum rules employed in this work, then describe the
details of our calculations and finally present and discuss the calculated
sum rules and dispersion coefficients.

THEORETICAL BACKGROUND

Wormer and co-workers!®16:35-38 expand the second order dispersion en-
ergy between two diatomic molecules A and B as

DEG, 00 04,8, @ R = S AE  (RA,, (8 @ §.6) (1)

[ e

where A | (8,,9,,8,, @) is an angular function®, which can be defined in
terms of the normalized spherical harmonics functions Y (8, ¢ as

AL, 0,,68, @)=

O, Ly LO
ZEHM -M OH\/I LA(A’(pA)\/i (B’qJB . (2)

The expansion coefficients AE_, | (R) are given as

Crl‘_ALBL
BE (R ==y T2 3)

n

In case of the dipole-dipole dispersion interaction this leads to six Cg coeffi-
cients, of which, however, only four are independent.

2

Ce™ :g(cu,n +2Cy, +2C, +4C, ) (4)
2

Ce* zg\g(cn,n +2C,, -Cy —2C,) ) (5)
2

Ce™ :gﬁ(C”'” -Cyy t2C, -2G,)) (6)
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220 _ 2 l
Cs 3{ Cir =Coy ~Cyo *+Co, ) )
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C222 - C220 (8)
6 m 6
C6224 — 554-C222 (9)

The coefficients C¢?* and CZ% become equal, if the molecules A and B are
the same. Instead of the anisotropic coefficients CJ** to C2** one often re-
ports dimensionless anisotropy factors y-*"s* defined as

Lalgl
Lalgl — C,

Yn - C 000

(10)

The coefficients C, Cr ), C; and C; can be obtained from electric di-
pole polarizabilities a”/® of the two molecules via integration over imagi-
nary frequencies®® iw according to the Casimir-Polder formula?

Cy = ;Tialf(iw) o (i) doo (11)
Coy= o EaDA(iw) of (i) doo (12)
0t E““ () o (i) doo (13)

C., 21; i6) @° (i) doo (14)

where a'® and a?’® are the components of the polarizability tensor parallel

and perpendicular to the molecular axis of molecule A or B, respectively.
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The definition in Eq. (1) should be distinguished from the “LLM” defini-
tion in terms of associated Legendre functions as employed by Langhoff,
Gordon and Karplus* and others*®41, However, the following simple rela-

tions connect the “LLL” coefficients of Wormer and co-workers to the C,g,

Fga and A,g coefficients of Langhoff, Gordon and Karplus* or the Cg, y2*

and y2*° coefficients of Meyer!.

cr® =cCc,, =C, (15)
V% =Bl =5y (a6)
1 1
y220 - 7A - y220 (17)
6 5 AB 3\/5 6

The Casimir-Polder integrals, Eqs (11)-(14), are typically evaluated
numerically either with a transformed Gauss-Legendre scheme?*? or with
a Gauss-Chebyshev quadrature®®. In the present study we have employed
the latter approach with a grid of 10 imaginary frequencies®®.

Components of the frequency dependent polarizabilities

0o, W0 WO MW | WO
uij(iw):zzj on B 1M Ll 1% (18)
h & W,, —W

where hw,, =E{” —E!® is the excitation energy from state |¥ ! Oto |W(¥ O
and (1, the i-th cartesian component of the electric dipole moment ope-
rator, could in principle also for imaginary frequencies be obtained from
linear response functions or polarization propagators

aij(m):_mmi;ﬁjm]w (19)

using complex arithmetic. However, for multiconfigurational linear re-
sponse functions®!! or polarization propagators based on Mgller-Plesset
perturbation theory®4344 this can be avoided by a moment expansion of
the linear response function'>17 which leads to a set of pseudostates which
can be used to calculate the polarizability for the imaginary frequencies ac-
cording to Eq. (18) as described elsewhere!?:33,
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Alternatively one can make use of the fact, that the frequency depend-
ence of the polarizability can be expressed in terms of dipole oscillator
strength sum rules?®,

2 . . .
S;(k) == sznl (O3 1, | Wi W |y | wi0 (20)
h &
in the following form
o, W) = ZS”(—ZI( -2)w™ (21)
k=

where S(-2);; are components of the static polarizability o; and the higher
negative even sum rules determine thus the frequency dependence of the
polarizability. This expansion, however, converges only for frequencies
below the first excitation energy, i.e. 1o <min{E{” - E{”’}. Nevertheless the
expansion can be extended beyond this convergence radius and in particu-
lar into the complex plane by using well known analytical continuation
techniques based on Padé approximants [n,m], to the frequency dependent
polarizability o 454® as given in Eq. (21). In particular the [n,n - 1], Padé ap-
proximant to a(iw) expressed by the sum rules, Eq. (21), can be used as
lower bound?®.

a; (iw) 2 [n,n-1], (22)

An upper bound“® can be obtained via the same type of Padé approximant
[n,n - 1] but now to §;(0) - w?a(iw) instead of to a(iw). This approximant is
usually denoted as [n,n - 1]. The upper bound to a(iw) is then given as

Sij ©) ~-[n,n _1]5

a; (iw) < 7 (23)

A variety of approximate linear response or polarization propagator
methods have been derived®. The simplest response functions is based on a
self-consistent-field (SCF) reference wavefunction!. This is equivalent to
the random phase approximation*’*8 or time dependent Hartree—Fock?*2:%0,
In SOPPA 4344 a Mgller-Plesset perturbation theory expansion of the wave
function®! is employed together with single and double excitation and de-
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excitation operators. All terms involving only single (de-)excitation opera-
tors are then evaluated to second order in Mgller-Plesset perturbation the-
ory, whereas terms involving single and double (de-)excitation operators
are evaluated to first order and pure double (de-)excitation terms only to
zeroth order. With this definition the SOPPA method gives single excitation
dominated excitation energies and transition moments correct to second
order®2, whereas response functions like the frequency dependent polariz-
ability are correct through second order®3, meaning that in addition to all
second-order terms also some higher-order terms are included. The SOPPA
response function, however, is not the response of a second-order wave-
function®3,

In the SOPPA(CCSD) method®* the Maller—Plesset correlation coefficients
are replaced in all SOPPA matrix elements by the corresponding coupled
cluster singles and doubles amplitudes in contrast to the earlier CCSDPPA
method®®, where only some of the Mgller—Plesset correlation coefficients
were replaced. Although SOPPA(CCSD) is based on a CCSD wavefunction,
it is still only correct through second order and not the linear response of a
CCSD wavefunction. Since the MP2 correlation coefficients are the result of
the first iteration for the CCSD amplitudes, the CCSD amplitudes give a
more accurate description of the connected doubles contribution to elec-
tron correlation. Thus it is often found that SOPPA(CCSD) give a better de-
scription of electron correlation than SOPPA 27:56-58

In the CCSD linear response function'?5%-61 which is the proper response
of a time-dependent CCSD wavefunction, the singles dominated excita-
tions and transition moments are still only correct to second order but the
doubles dominated excitations are now correct to first order. The response
functions like the frequency dependent polarizability are, however, still
only correct through second order®2.

The CC2 linear response function®?, finally, is an approximation to the
CCSD response function in the sense that the doubles equations in (i) the
non-linear ground state amplitude equations and (ii) the linear response
equations are approximated by the first order terms only, whereas the sin-
gles equations are kept unchanged. The equations for the ground state dou-
bles amplitudes in CC2 are then almost equal to the MP2 expressions for
the doubles correlation coefficients with the important modification that
the two electron integrals are transformed with single excitation cluster op-
erator T,. Like in SOPPA, the singles dominated CC2 excitation energies are
correct to second order and the doubles dominated excitations are only cor-
rect to zeroth order. However, contrary to SOPPA the transition moments
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and response functions like the frequency dependent polarizability are only
correct through first order2.

COMPUTATIONAL DETAILS

All calculations of frequency dependent polarizabilities for imaginary
frequencies and sum rules were carried out with the Dalton 2.0 pro-
gram?17.18.30.37.5461,63,64 The calculation of the C4 dispersion coefficients via
a Gauss—-Chebyshev quadrature with 10 grid points, as described in refer-
ence®%, and angular momentum re-coupling techniques were done with the
DISPER program of Wormer!5:38,

Experimental equilibrium geometries®, R,, = 0.09169 nm (HF), 0.12746 nm
(HCI), 0.14145 nm (HBr) and 0.16090 nm (HI) were used in the single point
calculations. For the calculation of the Cg coefficients surfaces we have var-
ied the two bond lengths by £0.02 nm.

In order to allow for a meaningful comparison with experimental data we
have used these polarizability, sum rule and Cg coefficient radial functions
and calculated the corresponding values of these properties in the vibra-
tional ground state [© _, ;(R)[] e.g.
a7’ = @®,,,la;(RIO,,, O (24)

ij

For diatomic molecules, the vibrational wavefunctions can be obtained
numerically by the Cooley-Numerov technique®® as solution of the one-
dimensional Schrédinger equation

O 42 Od? 0 2 7.2 O
FHE LIOHDE, e A e Rife,, 0= E,,[0,,0 (25)
0 24 LOR R° O 4me, R 0

where J is the rotational quantum number and Ey(R) is the electronic en-
ergy radial function. The vibrational averaging in Eq. (24) can then be car-
ried out numerically using the pointwise calculated property radial
functions. As electronic energy radial functions we have employed a RKR
potential curve®” for HF, a Morse potential fitted to experimental data for
HCI %8, an ab initio potential curve for HBr ®°, and for HI a curve fitted to ex-
perimental frequency data’®.

The convergence of the polarizabilities and Cgz coefficients with increas-
ing cardinal number X and level n of augmentation with extra diffuse func-
tions of the n-aug-cc-pVXZ series of basis sets’? has been investigated
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thoroughly in our previous study33. Based on the results of this study we
employ in the present study the d-aug-cc-pVQZ basis set for HF, HCI and
HBr. For HI we use the Stuttgart-Dresden-Bonn (SDB) energy-consistent rel-
ativistic effective large-core pseudopotential’? in combination with the aug-
mented correlation consistent basis sets, SDB-aug-cc-pVQZ, of Martin and
Sundermann?®. The additional functions for the double augmented basis
set were generated in the usual way?3, i.e. the exponent of the most diffuse
function was divided by the ratio between the exponents of the two most
diffuse functions. This leads to the following exponents: ¢ = 0.020387, {, =
0.013337, {4 = 0.029982, {; = 0.083274 and {; = 0.124319.

RESULTS AND DISCUSSION

Dipole Oscillator Strength Sum Rules

In Table | the results for the static average dipole polarizabilities S(-2) and
the frequency dependence, S(-4) and S(-6) are presented. Using the differ-
ence between the SCF and CCSD results as an estimate for the correlation
contribution, we can see that the importance of electron correlation in-
creases strongly from the S(-2) to the S(-6) sum rules but decreases strongly
from HF to HI. For HF the correlation contributions relative to the SCF re-
sult are 14, 41 and 79% for S(-2), S(-4) and S(-6), whereas for HI the
changes are only 2, 3 and 6%. Taking the CCSD results now as reference,
we find a very good agreement between the SOPPA(CCSD) and CCSD re-
sults for S(-2). The difference is on average only 1%. The pure SOPPA re-
sults differ somewhat more with an average deviation of 2% and CC2
finally shows the largest deviation with 3% on average. This implies that
for the static polarizability the usage of Coupled Cluster amplitudes in the
SOPPA(CCSD) method represents an improvement over SOPPA, as has pre-
viously been observed for the indirect nuclear spin-spin coupling constants
and rotational g-factors?”-56-58_ Secondly SOPPA gives results in better agree-
ment with CCSD than CC2. A similar better performance of SOPPA than
CC2 for static properties has also already previously been observed in the
calculation of nuclear magnetic shielding constants®’-’4 and optical rotary
powers®, However, for the frequency dependence, S(-4) and S(-6) the situa-
tion is reversed. SOPPA(CCSD) gives still the best agreement with the CCSD
results but CC2 shows now a smaller deviation from the CCSD results than
SOPPA.

Turning now to vibrationally averaged values, we can see that there is es-
sentially no difference between the zero point vibrational corrections
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TaBLE |
Dipole oscillator strength sum rules (in a.u.) for HX molecules (X = F, Cl, Br, I) at experi-
mental equilibrium geometries (Req) and including the zero point vibrational averaging cor-
rection (v = 0)

S(-2) S(-4) S(-6)
Molecule Method
Req v=0 Req v=0 Req v=0
HF SCF 4.91 8.62 24.76
SOPPA 5.88 6.00 14.58 15.44 62.37 69.15
SOPPA(CCSD)  5.68 5.79 13.83 14.63 58.87 65.12
cc2 5.98 6.11 14.53 15.34 59.91 65.88
CCsD 5.58 5.69 12.13 12.77 44.42 48.66
DOSD? 5.60 14.40 68.96
HCI SCF 16.75 60.62 301.9
SOPPA 17.54 17.71 70.19 71.81 395.8 411.3
SOPPA(CCSD) 17.29 17.45 68.14 69.66 377.0 391.1
ccz2 17.72 17.89 68.95 70.48 3785 392.0
CCSD 17.35 17.51 66.29 67.67 358.2 370.4
DOSD? 17.39 67.12 389.3
Expt.? 17.42 67.67 370.4
HBr SCF 23.20 104.7 646.6
SOPPA 24.21 24.36 118.9 120.7 813.1 834.0
SOPPA(CCSD) 23.87 24.00 116.2 117.8 785.2 804.1
cc2 24.31 24.47 115.5 117.2 764.5 782.3
CCSD 23.83 23.97 111.5 113.0 730.8 746.9
DOSD? 23.74 116.9 827.9
Expt.” 23.73 115.1 801.9
HI SCF 35.30 216.4 1789.
SOPPA 36.32 36.55 234.5 237.8 2041. 2087.
SOPPA(CCSD) 35.72 35.93 227.3 230.3 1943, 1982.
cc2 36.60 36.84 228.1 231.1 1925. 1962.
CCSD 35.94 36.15 223.2 225.8 1893. 1926.
Expt.? 35.33 225.2 1959.

& Empirical dipole oscillator strength distribution values from ref.’>; b experimental values
from ref.”®
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(ZPVCs) obtained with the different response methods. This is partially due
to the fact that we have employed the same potential energy radial func-
tions for all methods, but must also imply that the property surfaces ob-
tained with the different response function methods are essentially parallel
around the equilibrium geometry. The importance of the zero point vibra-
tional corrections (ZPVC) diminishes from HF to HI. The ZPVCs to S(-2),
i.e. the static polarizability, are thus in the order of 2% for HF and smaller
for the other molecules. Going to the higher sum rules S(-4) and S(-6) the
ZPVCs increase by roughly a factor of two each time.

Compared with the experimental based dipole oscillator strength distri-
bution (DOSD) values by Kumar and Meath’ or the experimental data
compiled by Olney et al.”® we find very nice agreement of our CCSD and
even SOPPA(CCSD) results (equilibrium geometry as well as vibrational
ground state values) with the DOSD values for the static polarizability (av-
eraged deviation less than 1%), followed by SOPPA and then CC2. For the
frequency dependence, the S(-4) and S(-6) sum rules, the agreement is less
satisfying despite the fact that vibrationally averaging improves the agree-
ment. Actually, some of the second order methods seem to give better agre-
ement with the experimental values than CCSD. However, we observe also
that for HCI and HBr the experimental and DOSD values differ almost as
much from each other as the CCSD results from them, which makes the
comparison somewhat vague. Nevertheless there is clearly room for im-
provement and it would be interesting to see how large triples corrections
to these properties might be.

We can also compare our results for the static dipole polarisability of HF
with results from previous CC2 calculations (5.72 a.u. using aug-cc-pVTZ 77,
5.27 a.u. using aug-cc-pVDZ 78, 5.47 a.u. using a large uncontracted basis
set’, 6.04 a.u. using t-aug-cc-pVTZ 8% and with a selection of the previous
CCSD calculations (5.86 a.u. using Sadlej’s polarized VTZ basis set®°, 5.38 a.u.
using aug-cc-pVTZ 77, 4.99 a.u. using aug-cc-pVDZ 78, 5.64 a.u. using
t-aug-cc-pVTZ 8%, 5.09 a.u. using aug-cc-pVDZ 31). Considering that the basis
sets in these previous studies apart from the study by Maroulis’® are of only
polarized valence double or triple zeta quality one can say that the agree-
ment is good.

For HCI we are only aware of four CCSD calculations: 17.53 a.u. using
Sadlej’s polarized VTZ basis set®, 17.23 or 17.32 a.u. using basis sets of po-
larized VQZ quality®!, 17.29 a.u. using the d-aug-cc-pV5Z basis set®? and
17.2 a.u. using the aug-cc-pVQZ basis set and an orbital relaxed version of
CCSD 22, which are all very close to our result.
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Padé Approximants

In Table 1l the dependence of the homomolecular CJ* coefficients on the
order n of the lower, Eq. (22), and upper bound, Eq. (23), Padé approxi-
mants is shown for the CC2 and CCSD calculations. At order n = 7 the gap
between the upper and lower bound is less than or equal 0.5% for all mole-
cules with the exception of the CCSD results for HF-HF where it amounts
to 0.8%. We will therefore use in the following the n = 7 lower bound as
our result for the C4 coefficients. One should note, however, that a smooth
convergence of the results with the order n is only obtained if the calcula-
tions are carried out with a very strict convergence threshold.

Dispersion Coefficients

We can thus turn our attention to the Cgz dispersion coefficients in Tables
Il and V. Using the difference between the SCF and CCSD results as an es-
timate for the correlation contribution, we can see that the relative impor-
tance of electron correlation for the isotropic Cg coefficient decreases again
from HF (17%) to HI (3%) similar to the polarizabilities in Table I. For the
anisotropic coefficients, on the other hand, no clear trend is observed.
Taking now again the CCSD results as reference we observe that in case of
the isotropic CJ® coefficients the SOPPA(CCSD) results are always smaller
and on average 2% or 3.7 a.u. below the CCSD results. The SOPPA C2® coef-
ficients are either essentially equal to or larger than the CCSD values and
on average 2% or 1.2 a.u. above the CCSD results. The SOPPA and
SOPPA(CCSD) values thus bracket the CCSD results. It is interesting to note
that for the dimers involving HF the SOPPA(CCSD) results are closer to the
CJ® coefficients than the SOPPA values, whereas for all the other dimers
SOPPA gives actually the results which are closest to the CCSD values. CC2,
on the other hand predicts always coefficients which are significantly larger
than the CCSD values (on average 5% or 6 a.u.). Furthermore CC2 shows
always larger deviations than the two perturbation theory methods.

For the anisotropic coefficients, C??, C2% and CZ2**, similar trends are ob-
served with SOPPA(CCSD) always underestimating and CC2 always over-
estimating the CCSD results, whereas SOPPA predicts with a few exceptions
for the HF containing dimers also mostly values below the CCSD results.
For the non-HF containing dimers SOPPA again outperforms CC2 as well as
SOPPA(CCSD).

Compared with the DOSD results by Kumar and Meath”™ we find that
CC2 as the only method consistently predicts to large values with a average
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TasLE I
Cg coefficients (in a.u.) for the homomolecular HX dimers (X = F, CI, Br, I) at experimental
equilibrium geometries (Req) and including the zero point vibrational averaging correction
(L=0

Cé)OO CgZZ 05224
Dimer Method
Req v=0 Req v=0 Req v=0
HF-HF  SCF 16.54 2.65 1.17
SOPPA? 2044  20.96 2.94 3.25 1.14 1.38
SOPPA(CCSD)* 19.32 19.78 2.78 3.07 1.09 1.31
cc2 2119  21.53 2.95 3.31 1.10 1.35
CCSD 19.33  19.67 2.81 3.15 1.10 1.34
DOSD® 19.00
HCI-HCI SCF 122.2 10.59 2.43
SOPPA? 128.4  130.0 10.70  11.86 2.37 2.88
SOPPA(CCSD)* 125.6  126.6 9.79  10.93 2.04 2.49
cc2 132.8 1343 11.75  13.10 2.74 3.35
CCSD 1286  129.9 11.03  12.28 2.50 3.04
DOSD" 130.4
HBr-HBr SCF 211.1 17.63 3.90
SOPPA? 2215 2233 1790  19.15 3.85 4.37
SOPPA(CCSD)? 216.2  217.7 1598  17.04 3.17 3.57
cc2 2268  227.7 19.80  21.36 4.55 5.23
CcCsD 220.1 2207 18.37  19.87 4.05 4.68
DOSD® 216.6
HI-HI  SCF 4157 29.77 5.72
SOPPA? 4285 4323 3049  33.38 5.81 6.84
SOPPA(CCSD)* 417.2  419.3 25.80 2851 431 5.12
cc2 4432  446.4 34.09  37.70 7.01 8.38
CCSD 4296 4322 31.19  34.35 6.10 7.23

& Equilibrium geometry data from ref.33; b empirical dipole oscillator strength distribution
values from ref.”®

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 11, pp. 1415-1436



Comparison of Mgller-Plesset and Coupled Cluster Linear Methods

1429

TABLE IV

Cg dispersion coefficients (in a.u.) for the heteromolecular dimers HX-HY (X, Y = F, Cl, Br, 1)
at experimental equilibrium geometries

Method cle c? c2? c

HF-HCI SOPPA 50.33 4.09 7.48 1.63
SOPPA(CCSD) 48.33 3.67 7.23 1.48
cc2 51.97 457 7.55 1.74
ccsD 48.86 4.15 7.34 1.65
DOSD? 48.85

HF-HBr SOPPA 65.53 5.18 9.79 2.07
SOPPA(CCSD) 62.85 453 9.45 1.83
cc2 67.47 5.69 9.82 2.19
CCsD 63.28 5.30 9.56 2.10
DOSD? 62.45

HF=HI SOPPA 89.26 6.29 13.48 2.52
SOPPA(CCSD) 85.50 5.23 13.02 2.12
cc2 92.03 7.70 13.48 2.89
CcCsD 86.74 6.46 13.22 2.57

HCI-HBr SOPPA 168.5 13.59 14.06 3.02
SOPPA(CCSD) 164.6 12.15 12.86 2.54
cc2 173.3 14.89 15.41 3.50
ccsD 167.7 14.13 14.45 3.20
DOSD? 167.8

HCI-HI SOPPA 232.8 16.59 19.54 3.70
SOPPA(CCSD) 227.2 14.08 17.86 2.96
cc2 240.0 19.54 21.40 451
CCsD 232.2 17.23 20.10 3.92

HBr—HI SOPPA 307.1 21.86 24.92 473
SOPPA(CCSD) 299.4 18.53 22.24 3.69
cc2 315.2 25.49 27.23 5.70
cCsD 306.1 22.52 25.71 5.01

& Empirical dipole oscillator strength distribution values from ref.”®
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deviation of 4% or 2.8 a.u., whereas the results of the other methods are
scattered around the empirical values. For CCSD, SOPPA(CCSD) and SOPPA
the average absolute deviations are thus 1% or 0.7 a.u., 1% or 1.0 a.u. and
2% or 1.4 a.u.

We are only aware of one earlier coupled cluster calculation®? of the C
disperion coefficient of HCI-HCI or any other hydrogen-halide dimer. In
this paper an isotropic CJ® coefficient of 125.3 a.u. at the relaxed CCSD
level was reported for HCI-HCI employing the aug-cc-pVQZ basis set. Also
this result is in close agreement with our unrelaxed CCSD result in Table III.

Dispersion Coefficient Surfaces

The dispersion coefficient surfaces, i.e. the C*"" (AR, ,AR,,, ), coefficients of
a dimer HX-HY as function of the deviation of the two intramolecular
bond lengths AR,y and ARy, from their equilibrium values, are essentially
flat as illustrated in Fig. 1 for HF-HF and HF-HCI.

We have therefore fitted them by using the Levenberg—Marquart method
to a bilinear form

CéALBL(AR ARH\{) - C'G-ALBL +a :;(LBLARHX +Q Lalg LARHY . (26)

HX HY

In Table V, we report the values of the linear fit parameters, a’y and o}y

of the isotropic component C® for all dimers and methods.

Fic. 1
Dispersion coefficient surfaces for HF-HF (a) and HF-HCI (b) obtained at the CCSD level
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In order to allow for the construction of a fully dimensional R part of
the dispersion PESs, according to Eqgs (1)-(3), we present in Table V also the
fit parameters for all independent Cq dispersion coefficients, CJ°, C2#, C2*
and C?**. Only the fits for the surfaces based on the CCSD results are given
in Table V, because the overall shape of the surfaces obtained with the
other methods, SOPPA, SOPPA(CCSD) and CC2, are quite similar to the
CCSD surfaces.

In Table Ill, we present also values of the Cgz dispersion coefficients for
the two molecules in their vibrational ground states. The changes in CJ®
are rather small — at most 2.5% for HF and on average only 1% similar to
the static polarizability. The changes in the anisotropic coefficients are in
absolute values even smaller.

SUMMARY

We have carried out correlated linear response calculations of the dipole os-
cillator strength sum rules of the hydrogen halides HX (with X = F, CI, Br
and 1) and the C4 dispersion coefficient for all pairs of interacting HX mole-
cules. The two Mgller-Plesset pertubation theory based methods SOPPA
and SOPPA(CCSD) as well as two coupled cluster theory methods, CC2 and
CCSD, were employed.

For the static polarizabilities we can conclude that SOPPA(CCSD) predicts
values which are in closer agreement with the CCSD results than the SOPPA
and CC2 results. Secondly SOPPA gives results in better agreement with
CCSD than CC2. However, for the frequency dependence, the S(-4) and S(-6)
sum rules, the situation is somewhat reversed. SOPPA(CCSD) gives still the
best agreement with the CCSD results although with significantly larger dif-
ferences than for the static polarizability. Furthermore the CC2 values differ
now less from the CCSD results than SOPPA values. Zero point vibrational
corrections to the static polarizability and sum rules changes the results by
at most 3% with the exception of S(-4) and S(-6) in HF, where the correc-
tion can amount to 10%.

For the Cg dispersion coefficients the picture is less clear. The
SOPPA(CCSD) results for the isotropic and anisotropic coefficients are al-
ways smaller than the CCSD results, whereas CC2 clearly overestimates all
dispersion coefficients. The SOPPA results, on the other hand, are depend-
ing on the dimer and coefficient larger or smaller than the CCSD values.
For the dimers containing HF, the isotropic SOPPA(CCSD) Cq4 coefficients
are always closest to the CCSD results, whereas for the other dimers the
SOPPA results for all coefficients are closest to the CCSD values. Overall, at
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least one of the two Mgller-Plesset pertubation theory based methods,
SOPPA or SOPPA(CCSD), gives always a better agreement with CCSD than
CC2 for the Cq dispersion coefficients of the hydrogen halides.

Finally the variation of the dispersion coefficients with the two
intramolecular distances is in the range close to the equilibrium structures
essentially linear.
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